Demand Sustainable AI from your Tech and Cloud Providers

5/5 (2)

5/5 (2)

While there has been much speculation about AI being a potential negative force on humanity, what we do know today is that the accelerated use of AI WILL mean an accelerated use of energy. And if that energy source is not renewable, AI will have a meaningful negative impact on CO2 emissions and will accelerate climate change. Even if the energy is renewable, GPUs and CPUs generate significant heat – and if that heat is not captured and used effectively then it too will have a negative impact on warming local environments near data centres.

Balancing Speed and Energy Efficiency

While GPUs use significantly more energy than CPUs, they run many AI algorithms faster than CPUs – so use less energy overall. But the process needs to run – and these are additional processes. Data needs to be discovered, moved, stored, analysed, cleansed. In many cases, algorithms need to be recreated, tweaked and improved. And then that algorithm itself will kick off new digital processes that are often more processor and energy-intensive – as now organisations might have a unique process for every customer or many customer groups, requiring more decisioning and hence more digitally intensive.

The GPUs, servers, storage, cabling, cooling systems, racks, and buildings have to be constructed – often built from raw materials – and these raw materials need to be mined, transported and transformed. With the use of AI exploding at the moment, so is the demand for AI infrastructure – all of which has an impact on the resources of the planet and ultimately on climate change.

Sustainable Sourcing

Some organisations understand this already and are beginning to use sustainable sourcing for their technology services. However, it is not a top priority with Ecosystm research showing only 15% of organisations focus on sustainable procurement.

Top Environmental Sustainability Initiatives

Technology Providers Can Help

Leading technology providers are introducing initiatives that make it easier for organisations to procure sustainable IT solutions. The recently announced HPE GreenLake for Large Language Models will be based in a data centre built and run by Qscale in Canada that is not only sustainably built and sourced, but sits on a grid supplying 99.5% renewable electricity – and waste (warm) air from the data centre and cooling systems is funneled to nearby greenhouses that grow berries. I find the concept remarkable and this is one of the most impressive sustainable data centre stories to date.

The focus on sustainability needs to be universal – across all cloud and AI providers. AI usage IS exploding – and we are just at the tip of the iceberg today. It will continue to grow as it becomes easier to use and deploy, more readily available, and more relevant across all industries and organisations. But we are at a stage of climate warming where we cannot increase our greenhouse gas emissions – and offsetting these emissions just passes the buck.

We need more companies like HPE and Qscale to build this Sustainable Future – and we need to be thinking the same way in our own data centres and putting pressure on our own AI and overall technology value chain to think more sustainably and act in the interests of the planet and future generations. Cloud providers – like AWS – are committed to the NetZero goal (by 2040 in their case) – but this is meaningless if our requirement for computing capacity increases a hundred-fold in that period. Our businesses and our tech partners need to act today. It is time for organisations to demand it from their tech providers to influence change in the industry.

Access More Insights Here
0
5 Actions to Achieve Your AI Ambitions​

5/5 (1)

Ecosystm Predicts: The Top 5 Trends for the Intelligent Enterprise in 2023

No ratings yet.

No ratings yet.

Organisations will continue their quest to become digital and data-first in 2023. Business process automation will be a priority for the majority; but many will look at their data strategically to derive better business value. 

As per Ecosystm’s Digital Digital Enterprise Study 2022, organisations will focus equally on Automation and Strategic AI in 2023.

Here are the top 5 trends for the Intelligent Enterprise in 2023 according to Ecosystm analysts, Alan Hesketh, Peter Carr, Sash Mukherjee and Tim Sheedy.

  • Cloud Will Be Replaced by AI as the Right Transformation Goal
  • Adoption of Data Platform Architecture Will See an Uptick
  • Tech Teams Will Finally Focus on Internal Efficiency
  • Data Retention/Deletion and Records Management Will Be Top Priority
  • AI Will Replace Entire Human Jobs

Read on for more details.

Download Ecosystm Predicts: The Top 5 Trends for the Intelligent Enterprise in 2023 as a PDF

Ecosystm Predictions 2023
0
5 Insights to Help Organisations Build Scalable AI – An ASEAN View

No ratings yet.

No ratings yet.

Data & AI initiatives are firmly at the core of any organisation’s tech-led transformation efforts. Businesses today realise the value of real-time data insights to deliver the agility that is required to succeed in today’s competitive, and often volatile, market.

But organisations continue to struggle with their data & AI initiatives for a variety of reasons. Organisations in ASEAN report some common challenges in implementing successful data & AI initiatives.

Here are 5 insights to build scalable AI.

  1. Data Access a Key Stumbling Block. Many organisations find that they no longer need to rely on centralised data repositories.
  2. Organisations Need Data Creativity. A true data-first organisation derives value from their data & AI investments across the entire organisation, cross-leveraging data.
  3. Governance Not Built into Organisational Psyche. A data-first organisation needs all employees to have a data-driven mindset. This can only be driven by clear guidelines that are laid out early on and adhered to by data generators, managers, and consumers.
  4. Lack of End-to-End Data Lifecycle Management. It is critical to have observability, intelligence, and automation built into the entire data lifecycle.
  5. Democratisation of Data & AI Should Be the Goal. The true value of data & AI solutions will be fully realised when the people who benefit from the solutions are the ones managing the solutions and running the queries that will help them deliver better value to the business.

Read below to find out more.

5-Insights-to-Build-Scalable-AI-ASEAN-1
5-Insights-to-Build-Scalable-AI-ASEAN-2
5-Insights-to-Build-Scalable-AI-ASEAN-3
5-Insights-to-Build-Scalable-AI-ASEAN-4
5-Insights-to-Build-Scalable-AI-ASEAN-5
5-Insights-to-Build-Scalable-AI-ASEAN-6
5-Insights-to-Build-Scalable-AI-ASEAN-7
5-Insights-to-Build-Scalable-AI-ASEAN-8
5-Insights-to-Build-Scalable-AI-ASEAN-9
5-Insights-to-Build-Scalable-AI-ASEAN-10
5-Insights-to-Build-Scalable-AI-ASEAN-11
previous arrow
next arrow
5-Insights-to-Build-Scalable-AI-ASEAN-1
5-Insights-to-Build-Scalable-AI-ASEAN-2
5-Insights-to-Build-Scalable-AI-ASEAN-3
5-Insights-to-Build-Scalable-AI-ASEAN-4
5-Insights-to-Build-Scalable-AI-ASEAN-5
5-Insights-to-Build-Scalable-AI-ASEAN-6
5-Insights-to-Build-Scalable-AI-ASEAN-7
5-Insights-to-Build-Scalable-AI-ASEAN-8
5-Insights-to-Build-Scalable-AI-ASEAN-9
5-Insights-to-Build-Scalable-AI-ASEAN-10
5-Insights-to-Build-Scalable-AI-ASEAN-11
previous arrow
next arrow
Shadow

Download 5 Insights to Help Organisations Build Scalable AI – An ASEAN View as a PDF

Artificial Intelligence Insights
0
The Future of Business: 5 Ways IT Teams Can Help Unlock the Value of Data

No ratings yet.

No ratings yet.

In the rush towards digital transformation, individual lines of business in organisations, have built up collections of unconnected systems, each generating a diversity of data. While these systems are suitable for rapidly launching services and are aimed at solving individual challenges, digital enterprises will need to take a platform approach to unlock the full value of the data they generate.

Data-driven enterprises can increase revenue and shift to higher margin offerings through personalisation tools, such as recommendation engines and dynamic pricing. Cost cutting can be achieved with predictive maintenance that relies on streaming sensor data integrated with external data sources. Increasingly, advanced organisations will monetise their integrated data by providing insights as a service.

Digital enterprises face new challenges – growing complexity, data explosion, and skills gap.

Here are 5 ways in which IT teams can mitigate these challenges.

  1. Data & AI projects must focus on data access. When the organisation can unify data and transmit it securely wherever it needs to, it will be ready to begin developing applications that utilise machine learning, deep learning, and AI.
  2. Transformation requires a hybrid cloud platform. Hybrid cloud provides the ability to place each workload in an environment that makes the most sense for the business, while still reaping the benefits of a unified platform.
  3. Application modernisation unlocks future value. The importance of delivering better experiences to internal and external stakeholders has not gone down; new experiences need modern applications.
  4. Data management needs to be unified and automated. Digital transformation initiatives result in ever-expanding technology estates and growing volumes of data that cannot be managed with manual processes.
  5. Cyber strategy should be Zero Trust – backed by the right technologies. Organisations have to build Digital Trust with privacy, protection, and compliance at the core. The Zero Trust strategy should be backed by automated identity governance, robust access and management policies, and least privilege.

Read below to find out more.

Slide 1
Slide2
Slide3
Slide4
Slide5
Slide6
Slide7
Slide8
Slide9
previous arrowprevious arrow
next arrownext arrow
Slide 1
Slide2
Slide3
Slide4
Slide5
Slide6
Slide7
Slide8
Slide9
previous arrow
next arrow
Shadow

Download The Future of Business: 5 Ways IT Teams Can Help Unlock the Value of Data as a PDF

More Insights to tech Buyer Guidance
0
The Future of Business: 7 Steps to Delivering Business Value with Data & AI

5/5 (2)

5/5 (2)

In recent years, businesses have faced significant disruptions. Organisations are challenged on multiple fronts – such as the continuing supply chain disruptions; an ongoing energy crisis that has led to a strong focus on sustainability; economic uncertainty; skills shortage; and increased competition from digitally native businesses. The challenge today is to build intelligent, data-driven, and agile businesses that can respond to the many changes that lie ahead.

Leading organisations are evaluating ways to empower the entire business with data, machine learning, automation, and AI to build agile, innovative, and customer-focused businesses. 

Here are 7 steps that will help you deliver business value with data and AI:

  • Understand the problems that need solutions. Before an organisation sets out on its data, automation, and AI journey, it is important to evaluate what it wants to achieve. This requires an engagement with the Tech/Data Teams to discuss the challenges it is trying to resolve.
  • Map out a data strategy framework. Perhaps the most important part of this strategy are the data governance principles – or a new automated governance to enforce policies and rules automatically and consistently across data on any cloud.
  • Industrialise data management & AI technologies. The cumulation of many smart, data-driven initiatives will ultimately see the need for a unified enterprise approach to data management, AI, and automation.
  • Recognise the skills gap – and start closing it today. There is a real skills gap when it comes to the ability to identify and solve data-centric issues. Many businesses today turn to technology and business consultants and system integrators to help them solve the skills challenge.
  • Re-start the data journey with a pilot. Real-world pilots help generate data and insights to build a business case to scale capabilities.
  • Automate the outcomes. Modern applications have made it easier to automate actions based on insights. APIs let systems integrate with each other, share data, and trigger processes; and RPA helps businesses automate across applications and platforms.
  • Learn and improve. Intelligent automation tools and adaptive AI/machine learning solutions exist today. What organisations need to do is to apply the learnings for continuous improvements.

Find more insights below.

7-Steps-to-Delivering-Business-Value-Data-AI-1
7-Steps-to-Delivering-Business-Value-Data-AI-2
7-Steps-to-Delivering-Business-Value-Data-AI-3
7-Steps-to-Delivering-Business-Value-Data-AI-4
7-Steps-to-Delivering-Business-Value-Data-AI-5
7-Steps-to-Delivering-Business-Value-Data-AI-6
7-Steps-to-Delivering-Business-Value-Data-AI-7
7-Steps-to-Delivering-Business-Value-Data-AI-8
7-Steps-to-Delivering-Business-Value-Data-AI-9
7-Steps-to-Delivering-Business-Value-Data-AI-10
7-Steps-to-Delivering-Business-Value-Data-AI-111
previous arrowprevious arrow
next arrownext arrow
7-Steps-to-Delivering-Business-Value-Data-AI-1
7-Steps-to-Delivering-Business-Value-Data-AI-2
7-Steps-to-Delivering-Business-Value-Data-AI-3
7-Steps-to-Delivering-Business-Value-Data-AI-4
7-Steps-to-Delivering-Business-Value-Data-AI-5
7-Steps-to-Delivering-Business-Value-Data-AI-6
7-Steps-to-Delivering-Business-Value-Data-AI-7
7-Steps-to-Delivering-Business-Value-Data-AI-8
7-Steps-to-Delivering-Business-Value-Data-AI-9
7-Steps-to-Delivering-Business-Value-Data-AI-10
7-Steps-to-Delivering-Business-Value-Data-AI-111
previous arrow
next arrow
Shadow

Download The Future of Business: 7 Steps to Delivering Business Value with Data & AI as a PDF

More Insights to tech Buyer Guidance
0