Crypto’s Crossroads: Introspection and Innovation

5/5 (2)

5/5 (2)

This year’s theme at the ETHDenver – one of crypto’s OG annual gatherings, was “Year of the Regenerates.” This captures the core tension in Web3: the casino vs. the computer. On one side, the pump-and-dumps, meme coin frenzies, and hyper-financialisation. On the other, the cypherpunk ideals of decentralisation, open infrastructure, and a freer, fairer web.

It’s a timely moment for reflection. Crypto prices are tanking alongside global markets, Bitcoin is down, and headline scandals – like the USD1.3B hack of ByBit and millions lost by retail investors to the meme coin mania – paint a bleak picture.

But the full story isn’t just chaos and collapse. There’s real momentum beneath the noise – and a dose of optimism is exactly what the space needs right now.


ByBit: Green Shoots Amidst the Biggest Hack

The crypto market has seen renewed bearish sentiment, intensified by the USD1.5 billion ByBit hack on February 21, 2025 – the largest crypto heist to date, reportedly carried out by North Korea’s Lazarus Group. Notably, the attack’s impact was limited thanks to Copper’s Clearloop custody infrastructure, which protected user funds through its bankruptcy-remote design.

Yet despite the headline-grabbing loss, several market watchers have pointed to unexpectedly bullish signals emerging from the aftermath.

  • Reduced Leverage and Market Stability. A potential silver lining is the decline in leverage across the market. With meme coin fatigue setting in, investors may be shifting toward more sustainable strategies. This could pave the way for long-term capital, especially as independent advisors begin recommending crypto and ETF products.
  • Liquidity Injection from Loss Coverage. ByBit CEO Ben Zhou confirmed the company is covering 80% of the stolen funds through bridge loans. Some view this as bullish, arguing that while the stolen ETH remains on-chain, ByBit’s repurchases inject fresh liquidity into the market.
  • No Bank Run and Trust in Exchanges. The lack of a bank run after the hack signals strong trust in ByBit’s solvency and response. Despite being one of the biggest heists in crypto, ByBit’s handling has been steady – prices have held, and users haven’t rushed to withdraw. That, in itself, is a positive sign. CEO Ben Zhou echoed this confidence, stating: “ByBit is solvent even if the loss isn’t recovered. All client assets are 1:1 backed.”
  • Unexpected Positive Spin: Hacks as Catalysts.  A contrarian view suggests that hacks, despite their damage, can drive platform evolution. This hack, for instance, could be seen as bullish – profit was extracted from value extractors, pushing ByBit to strengthen, become more anti-fragile, and reset stale positions and liquidity. The takeaway: crises can spark necessary resets and infrastructure upgrades – an unexpected upside in an otherwise negative event.

While some views may be unconventional, they underscore a maturing market better equipped to handle challenges, offering optimism for long-term recovery and growth beyond the current value and liquidity fluctuations.

Institutional Adoption Peaking Despite Bearish Sentiment

The tokenisation of real-world assets (RWAs) and the growing institutional adoption of digital assets are gaining momentum, even amid broader bearish sentiment in the crypto market. Driven by technological innovation, clearer regulations, and tangible benefits like enhanced liquidity, cost efficiency, and streamlined operations, these trends continue to evolve. Here’s an overview of the latest developments:

  • Tokenisation of Real-World Assets. Despite bearish sentiment, the RWA tokenisation market is set for rapid growth. Analysts like Clearpool’s Ozean predict tokenised RWAs could hit a USD 50 billion market cap by 2025, driven by TradFi moving on-chain. Other forecasts from Standard Chartered (USD 30 trillion by 2034) and Boston Consulting Group (USD 16 trillion by 2030) highlight long-term potential, even if short-term conditions are volatile.
  • Expansion of Asset Classes. Tokenisation is expanding beyond U.S. Treasuries and stablecoins to include real estate, private credit, commodities, carbon credits, and intellectual property. Real estate tokenisation, for example, is unlocking liquidity in traditionally illiquid markets, with platforms showing savings in home equity lines of credit (HELOCs) and collateralised loans. The total value locked in tokenised assets surpassed USD 176 billion in 2024, a 32% increase, with non-stablecoin assets growing 53%.
  • Stablecoins as the “Killer App”. Stablecoins, pegged to assets like the U.S. dollar or treasuries, are becoming a safe haven in crypto. Their stability during market downturns has boosted their reputation as a “killer app” for blockchain, shifting focus from speculative tokens to practical, low-volatility tools. With a market cap surpassing USD 200 billion in 2025, Tether (USDT) and USD Coin (USDC) lead the way. New entrants like PayPal’s PYUSD (launched 2023) and treasury-backed stablecoins (e.g., Ondo Finance) are making waves. The “PayFi” race is on, with stablecoins integrating yield-bearing features linked to tokenised treasuries.  
  • Technological Advancements. Blockchain platforms are evolving, with AI driving RWA tokenisation and decentralised public infrastructure (DePIN). AI tools are enhancing risk assessment, compliance, and trading, making tokenised assets more attractive to institutions. Multi-chain technologies are improving interoperability and scalability, overcoming past limitations.
  • Notable Projects and Milestones.
    • BlackRock’s BUIDL Fund. Launched in March 2024, this tokenised fund became the largest of its kind, managing USD 657 million in assets by January 2025. BlackRock is also investing in tokenisation firms and exploring stablecoins, signalling a strategic shift.
    • Clearpool’s Ozean. This protocol processed over USD 650 million in loans in Q4 2024, with a 51% rise in total value locked, reflecting growing traction.
    • T-RIZE Group. In December 2023, the firm tokenised a USD 300 million residential project in Canada, showcasing real estate tokenisation at an institutional level.
    • JPMorgan. Using its Onyx platform for blockchain-based settlements, tokenisation is now seen as a “killer app” for efficiency.
    • Goldman Sachs. Its Digital Asset Platform is tokenising bonds, and repo transactions with Broadridge and J.P. Morgan total trillions monthly.
    • Deutsche Bank. Joined Singapore’s Project Guardian in May 2024 to tokenise assets, reflecting institutional global interest.
  • Regulatory Progress as a Catalyst. While regulatory uncertainty remains, 2025 shows promise. The potential appointment of crypto-friendly figures under a Trump administration could accelerate clarity in the U.S. Meanwhile, the Financial Action Task Force (FATF) is developing standards for tokenised RWAs, fostering cross-border adoption. Countries like Switzerland, Singapore, and Japan are already testing tokenised financial products, creating a more favourable regulatory environment.
  • Institutional Sentiment and Investment Surveys.  Institutional confidence is high. A BNY Mellon survey found 97% of institutional investors believe tokenisation will revolutionise asset management. EY-Parthenon research shows two-thirds of institutions are already invested in digital assets, with larger asset managers (AUM > USD 500 billion) launching tokenised funds. The Tokenised Asset Coalition found 86% of Fortune 500 executives recognise tokenisation’s benefits, with 35% actively pursuing projects.
  • Bridging TradFi and DeFi. RWAs are bridging traditional and decentralised finance. Stablecoins tied to tokenised assets (e.g., treasuries) mitigate volatility, attracting cautious institutional players. Partnerships like Ripple and Archax aim to bring hundreds of millions in tokenised RWAs to the XRP Ledger, highlighting the convergence of TradFi and DeFi.

Resilience Amid Bearish Sentiments

Despite bearish market conditions driven by crypto volatility and macro pressures like inflation, institutional adoption is gaining momentum. Tokenisation offers tangible benefits – fractional ownership, 24/7 trading, and faster settlements – that solve inefficiencies in traditional systems. These advantages hold steady, regardless of market sentiment. For example, tokenised repos minimise operational errors and unlock intraday liquidity, while tokenised yields, such as treasuries, now outpace DeFi lending rates, drawing capital even in a “crypto winter.”

Regulatory fragmentation and security risks like hacking and smart contract vulnerabilities still pose challenges, while mainstream adoption, though accelerating, trails behind pilot successes.

Yet, the fundamentals remain resilient. With upcoming upgrades like Solana’s Firedancer client and Ethereum’s Pectra, blockchain infrastructure will advance. The focus for web3 builders will shift back to innovation, not token price charts. The path from meme coins to real utility may be long, but with the talent and creativity within the ecosystem, it’s far from impossible.

Point Zero Forum 2025
0
Future Forward: Reimagining Manufacturing

5/5 (2)

5/5 (2)

The Manufacturing sector, traditionally defined by stable processes and infrastructure, is now facing a pivotal shift. Rapid technological advancements and shifting global market dynamics have rendered incremental improvements inadequate for long-term competitiveness and growth. To thrive, manufacturers must fundamentally reimagine their entire value chain.

By embracing intelligent systems, enhancing agility, and proactively shaping future-ready operations, organisations can navigate today’s industrial complexities and position themselves for sustained success.

Here are recent examples of Manufacturing transformation in the Asia Pacific.

Reimagining_Manufacturing_Transformation_Stories-1
Reimagining_Manufacturing_ Transformation_ Stories-1
Reimagining_Manufacturing_ Transformation_ Stories-2
Reimagining_Manufacturing_ Transformation_ Stories-3
Reimagining_Manufacturing_ Transformation_ Stories-4
Reimagining_Manufacturing_ Transformation_ Stories-5
Reimagining_Manufacturing_ Transformation_ Stories-6
Reimagining_Manufacturing_ Transformation_ Stories-7
Reimagining_Manufacturing_ Transformation_ Stories-8
Reimagining_Manufacturing_ Transformation_ Stories-9
previous arrowprevious arrow
next arrownext arrow
Reimagining_Manufacturing_ Transformation_ Stories-1
Reimagining_Manufacturing_ Transformation_ Stories-2
Reimagining_Manufacturing_ Transformation_ Stories-3
Reimagining_Manufacturing_ Transformation_ Stories-4
Reimagining_Manufacturing_ Transformation_ Stories-5
Reimagining_Manufacturing_ Transformation_ Stories-6
Reimagining_Manufacturing_ Transformation_ Stories-7
Reimagining_Manufacturing_ Transformation_ Stories-8
Reimagining_Manufacturing_ Transformation_ Stories-9
previous arrow
next arrow
Shadow

Click here to download “Future Forward: Reimagining Manufacturing” as a PDF.

Intelligent Automation & Efficiency

Komatsu Australia, a global industrial equipment manufacturer, tackled growing inefficiencies in its small parts department, where teams manually processed hundreds of PDF invoices daily from more than 250 suppliers.

To streamline this, the company deployed intelligent automation – AI now extracts and validates data from invoices against purchase orders and inputs it directly into the legacy mainframe.

The impact has been sharp: over 300 hours saved annually for one supplier, 1,100 invoices processed in three weeks, and a dramatic drop in manual errors. Employees have shifted to higher-value tasks, and a citizen developer program is enabling staff to build custom automation tools. With a scalable framework in place, Komatsu has not only transformed invoice processing but also set the stage for broader automation across the enterprise.

Data-Driven Insights & Agility

Berger Paints India Ltd., a leader in paints and coatings, needed to scale fast amid rising database loads and complex on-prem systems.

In response, Berger Paints migrated its mission-critical databases and core business applications – covering finance, manufacturing, sales, and asset management – to a high-performance cloud platform.

This shift boosted operational efficiency by 25%, doubled reporting and system response times, and enhanced scalability and disaster recovery with geographically distributed cloud regions. The move simplified access to data, driving faster, insight-driven decision-making. With streamlined infrastructure management and optimised costs, Berger Paints is now poised to leverage advanced technologies like AI/ML, setting the stage for continued innovation and growth.

Connected Operations & Customer Centricity

JSW Steel, one of India’s leading steel producers, set out to shift from a plant-centric model to a customer-first approach. The challenge: integrating complex systems like ERP, CRM, and manufacturing to streamline operations and improve order fulfillment.

With a robust integration platform, JSW Steel connected over 32 systems using 120+ APIs – automating processes and enabling real-time data flow across orders, inventory, pricing, and production.

The results speak for themselves: faster order fulfillment, reduced cost-to-serve, and real-time visibility that optimises scheduling. Scalable, composable APIs now support growth, while a 99.7% success rate across 7.2 million API calls ensures reliability. JSW Steel has transformed how it operates – running faster, serving smarter, and delivering better customer experiences across the entire order-to-cash journey.

Modernising Core Systems & Foundational Transformation

Fujitsu General, a global leader in air conditioning systems, was constrained by a 30-year-old COBOL-based mainframe and fragmented processes. The legacy system posed a Y2K-like risk and limited operational agility.

The company implemented a modern, unified ERP platform to eliminate risk, streamline operations, and boost agility.

By integrating functions across sales, production, procurement, accounting, and HR and addressing unique business needs with low-code development, the company created a clean, adaptable core system. Robust integration connected disparate data sources, while a central repository eliminated silos. The transformation delivered seamless end-to-end operations, standardised workflows, improved agility, and real-time insights – setting Fujitsu General up for continued innovation and long-term resilience.

Powering Growth with a Modern Network

As a critical supplier to India’s infrastructure boom, Hindalco needed to modernise its network across 55 sites – improving app performance, enabling real-time insights, and building a future-ready, sustainable foundation.

Hindalco replaced its ageing hub-and-spoke model with a modern mesh architecture using SD-WAN.

The new architecture prioritised key app traffic, simplified cloud access, and enabled segmentation. Centralised orchestration and SSE integration brought automation and robust security. The impact: 30% lower costs, 50% faster apps, real-time visibility, rapid deployment, and smarter bandwidth. Hindalco now runs on a lean, secure digital backbone – built for agility, performance, and scale.

More Insights to tech Buyer Guidance
0
AI in Government: Success Stories & Insights​

5/5 (1)

5/5 (1)

Over the past year, Ecosystm has conducted extensive research, including surveys and in-depth conversations with industry leaders, to uncover the most pressing topics and trends. And unsurprisingly, AI emerged as the dominant theme.​ Here are some insights from our research on Public Sector. ​

AI-in-Government-Success-Stories-Insights
AI-in-Government-Success-Stories-Insights
AI-in-Government-Success-Stories-Insights
AI-in-Government-Success-Stories-Insights
AI-in-Government-Success-Stories-Insights
AI-in-Government-Success-Stories-Insights
AI-in-Government-Success-Stories-Insights
AI-in-Government-Success-Stories-Insights
AI-in-Government-Success-Stories-Insights-1
AI-in-Government-Success-Stories-Insights-2
AI-in-Government-Success-Stories-Insights-3
AI-in-Government-Success-Stories-Insights-4
AI-in-Government-Success-Stories-Insights-5
AI-in-Government-Success-Stories-Insights-6
AI-in-Government-Success-Stories-Insights-7
AI-in-Government-Success-Stories-Insights-8
previous arrowprevious arrow
next arrownext arrow
AI-in-Government-Success-Stories-Insights-1
AI-in-Government-Success-Stories-Insights-2
AI-in-Government-Success-Stories-Insights-3
AI-in-Government-Success-Stories-Insights-4
AI-in-Government-Success-Stories-Insights-5
AI-in-Government-Success-Stories-Insights-6
AI-in-Government-Success-Stories-Insights-7
AI-in-Government-Success-Stories-Insights-8
previous arrow
next arrow
Shadow

Click here to download ‘AI in Government: Success Stories & Insights​’ as a PDF

From improving citizen services to infrastructure management, AI is empowering governments to deliver efficient, effective, and equitable public services. While challenges like data privacy and the need for investments in technology infrastructure remain, governments that can overcome these obstacles and harness the power of AI will be well-positioned to shape the future of public service.

Despite the challenges, Public Sector organisations are witnessing early AI success in these 3 areas:​

  1. 1. Public Services & Citizen Engagement
  2. 2. Infrastructure Management & Optimisation
  3. 3. Internal Operations & Efficiency

Public Services & Citizen Engagement​

  • Chatbots & Virtual Assistants​. Providing citizens with information and support​
  • Online Services​. Delivering government services online, such as healthcare and education​
  • Citizen Engagement​. Gathering and analysing citizen feedback to deepen engagement​

“The pandemic accelerated the development of AI-based apps and services, which provide answers to citizen inquiries and manage bookings. Initially introduced for contactless interaction due to health concerns, these technologies are now boosting employee productivity and eliminating bottlenecks.” ​- CITIZEN SERVICES LEADER

Infrastructure Management & Optimisation​​

  • Traffic Management​. Optimising traffic flow and reducing congestion​
  • Urban Planning. Analysing urban growth patterns and planning for future development
  • Asset Management. Managing and maintaining government assets efficiently

“AI solutions have greatly enhanced visibility across multiple key departments – detection of roadblocks and accidents, real-time updates on drainage issues during rainy seasons, remotely monitoring water quality, and so on.” ​- URBAN DEVELOPMENT LEADER

Internal Operations & Efficiency​​

  • Workflow Automation​. Automating various government processes to improve efficiency​
  • Decision Support​. Providing decision-makers with AI-powered insights and recommendations​
  • Resource Management​. Optimising the allocation and management of resources​

“We are committed to increase our investments on process efficiency, with the ultimate objective of providing better citizen services.” ​- CIO, CITIZEN WELFARE ORGANISATION

AI Research and Reports

0
5G and the Edge Extend Prescriptive Maintenance into the field

5/5 (2)

5/5 (2)

The rollout of 5G combined with edge computing in remote locations will change the way maintenance is carried out in the field. Historically, service teams performed maintenance either in a reactive fashion – fixing equipment when it broke – or using a preventative calendar-based approach. Neither of these methods is satisfactory, with the former being too late and resulting in failure while the latter is necessarily too early, resulting in excessive expenditure and downtime. The availability of connected sensors has allowed service teams to shift to condition monitoring without the need for taking equipment offline for inspections. The advent of analytics takes this approach further and has given us optimised scheduling in the form of predictive maintenance.

The next step is prescriptive maintenance in which AI can recommend action based on current and predicted condition according to expected usage or environmental circumstances. This could be as simple as alerting an operator to automatically ordering parts and scheduling multiple servicing tasks depending on forecasted production needs in the short term.

Prescriptive Maintenance - Leveraging AI in the field

Prescriptive maintenance has only become possible with the advancement of AI and digital twin technology, but imminent improvements in connectivity and computing will take servicing to a new level. The rollout of 5G will give a boost to bandwidth, reduce latency, and increase the number of connections possible. Equipment in remote locations – such as transmission lines or machinery in resource industries – will benefit from the higher throughput of 5G connectivity, either as part of an operator’s network rollout or a private on-site deployment. Mobile machinery, particularly vehicles, which can include hundreds of sensors will no longer be required to wait until arrival before the condition can be assessed. Furthermore, vehicles equipped with external sensors can inspect stationary infrastructure as it passes by.

Edge computing – either carried out by miniature onboard devices or at smaller scale data centres embedded in 5G networks – ensure that intensive processing can be carried out closer to equipment than with a typical cloud environment. Bandwidth hungry applications, such as video and time series analysis, can be conducted with only meta data transmitted immediately and full archives uploaded with less urgency.

Prescriptive Maintenance with 5G and the Edge – Use Cases

  • Transportation. Bridges built over railway lines equipped with high-speed cameras can monitor passing trains to inspect for damage. Data-intensive video analysis can be conducted on local devices for a rapid response while selected raw data can be uploaded to the cloud over 5G to improve inference models.
  • Mining. Private 5G networks built-in remote sites can provide connectivity between fixed equipment, vehicles, drones, robotic dogs, workers, and remote operations centres. Autonomous haulage trucks can be monitored remotely and in the event of a breakdown, other vehicles can be automatically redirected to prevent dumping queues.
  • Utilities. Emergency maintenance needs can be prioritised before extreme weather events based on meteorological forecasts and their impact on ageing parts. Machine learning can be used to understand location-specific effects of, for example, salt content in off-shore wind turbine cables. Early detection of turbine rotor cracks can recommend shutdown during high-load periods.
Access More Insights Here

Data as an Asset

Effective prescriptive maintenance only becomes possible after the accumulation and integration of multiple data sources over an extended period. Inference models should understand both normal and abnormal equipment performance in various conditions, such as extreme weather, during incorrect operation, or when adjacent parts are degraded. For many smaller organisations or those deploying new equipment, the necessary volume of data will not be available without the assistance of equipment manufacturers. Moreover, even manufacturers will not have sufficient data on interaction with complementary equipment. This provides an opportunity for large operators to sell their own inference models as a new revenue stream. For example, an electrical grid operator in North America can partner with a similar, but smaller organisation in Europe to provide operational data and maintenance recommendations. Similarly, telecom providers, regional transportation providers, logistics companies, and smart cities will find industry players in other geographies that they do not naturally compete with.

Recommendations

  • Employing multiple sensors. Baseline conditions and failure signatures are improved using machine learning based on feeds from multiple sensors, such as those that monitor vibration, sound, temperature, pressure, and humidity. The use of multiple sensors makes it possible to not only identify potential failure but also the reason for it and can therefore more accurately prescribe a solution to prevent an outage.
  • Data assessment and integration. Prescriptive maintenance is most effective when multiple data sources are unified as inputs. Identify the location of these sources, such as ERP systems, time series on site, environmental data provided externally, or even in emails or on paper. A data fabric should be considered to ensure insights can be extracted from data no matter the environment it resides in.
  • Automated action. Reduce the potential for human error or delay by automatically generating alerts and work orders for resource managers and service staff in the event of anomaly detection. Criticality measures should be adopted to help prioritise maintenance tasks and reduce alert noise.
Artificial Intelligence Insights
1
Hitachi Acquires GlobalLogic

5/5 (3)

5/5 (3)

Hitachi announced their plans to acquire US based software development company GlobalLogic for an estimated USD 9.6 billion, including debt repayment. The transaction is expected to close by end of July, after which GlobalLogic will function under Hitachi’s Global Digital Holdings.

GlobalLogic was founded in 2000, and the Canada Pension Plan Investment Board and Swiss investment firm Partners Group have 45% of ownership; with the remainder owned by the company’s management.

Hitachi’s Business Portfolio Expansion

The acquisition of GlobalLogic is a part of Hitachi’s move to focus and extend the range of Hitachi’s digital services business. As Hitachi aims to expand from electronics hardware to concentrate on digital services, they are looking to benefit from GlobalLogic’s range of expertise – from chips to cloud services. Silicon Valley-based GlobalLogic has a presence in 14 countries with more than 20,000 employees and 400 active clients in industries including telecommunications, healthcare, technology, finance and automotive. This will also expand Hitachi’s network outside Japan by providing them access to a global customer base and will boost their software and solutions platforms, including Hitachi IoT portfolio and data analytics.

The GlobalLogic deal follows another big acquisition of ABB’s power grid business by Hitachi in July 2020 to focus on clean energy and distributed energy frontiers. This makes Hitachi one of the largest global grid equipment and service providers in all regions.

Hitachi is also planning to divest parts of their portfolio such as Hitachi Metals, their chemical unit and their medical equipment business.

Ecosystm Comments

Hitachi’s move to acquire GlobalLogic is very interesting and is in line with the growing trend of global Operation Technology (OT) vendors riding the wave of Industry 4.0 and ‘Product as a Service’ models – essentially, to move up the margin ladder with more digital services added on to their already established equipment business. Siemens, Schneider Electric, Panasonic, ABB, Hitachi and Johnson Controls are some of the prominent vendors who have taken pole positions in their respective industry domains, in this race to digitally transform their businesses and business models. Last year, Panasonic made a very similar move, taking a 20% equity stake in Blue Yonder, a leading supply chain software provider.

With rapid advancements in computing and communications (5G), it is now possible to converge the IT (Information Technology supporting enterprise information flows), the OT (Operational Technology – machine level control of the physical equipment), and the ET (Engineering Technology in the Product Design and Development space such as CAD, CAM, PDM etc.) domains. Three worlds that were separate till now. The convergence of these three worlds enables high impact use cases in automation, product, process, and business model innovation in almost all sectors, such as autonomous vehicles, energy efficient buildings, asset tracking and monitoring, and predictive and prescriptive maintenance. For the OT vendors therefore, it becomes critical to acquire IT and ET capabilities to become successful in the new cyber physical world. Most OT vendors are choosing to acquire these capabilities through strategic partnerships (such as Siemens with Atos and SAP; Panasonic with Blue Yonder) or acquisitions (such as Hitachi and GlobalLogic) rather than develop such capabilities organically in completely new domains.


Get your Free Copy
2
SAP and Siemens Partner to Accelerate Industrial Automation

5/5 (1)

5/5 (1) Last week industry leaders, SAP and Siemens, announced a partnership to bring together their respective expertise on creating integrated and enhanced solutions for product lifecycle management (PLM), supply chain, service and asset management, in a move that is expected to accelerate Industry 4.0 globally.

The partnership between SAP and Siemens aims to develop innovative business models to break silos between manufacturing, product development and service delivery teams to establish seamless customer-centric processes. It will provide users with real-time business information, customer insights and performance data over the entire product development cycle.

As the first step of this agreement, Siemens will offer SAP’s Intelligent Asset Management solution and Project and Portfolio Management applications and SAP will offer Siemens’ PLM suite Teamcenter software for product lifecycle collaboration and data management to manufacturers and business operators across the network – complementing each other’s solutions.

Ecosystm Principal Advisor, Kaushik Ghatak says, “The convergence of the Information Technology (IT) and the Operational Technology (OT) worlds is a must for companies to operate in the cyber physical world of Industry 4.0. Historically, these two worlds have operated in silos. This is a great partnership announcement aimed towards meeting the convergence goals by integrating the capabilities of Siemens (an OT leader), and SAP (an IT leader). Together they would be able to offer an exhaustive set of very valuable offerings in the Digital Supply Chain and Digital Manufacturing domain for customers worldwide.”

Ghatak says, “This is not the first such partnership for Siemens. A strategic alliance between Siemens and Atos has been in place since 2011. In 2018 the alliance was strengthened with plans to accelerate their joint business until 2020, with a focus on building innovative solutions by combining their capabilities. However, the difference this time is that SAP has very a deep and wide set of software offerings in the supply chain and manufacturing domains, which when stitched together with Siemens’ PLM solutions can provide true end-to-end digitalisation capabilities across the ‘Design, Source, Make, Deliver and Plan’ continuum of the value chain.”

Ecosystm Comments

Ghatak, however, cautions that while this is a great partnership announcement between two giants in their respective fields, they will need to collaborate actively on three key aspects for this partnership to deliver value for the customers.

  • Product Development. Building-integrated solutions with heterogenous data models is not easy. It will require very open collaboration between their product development teams to identify the use cases and build solutions that can enable seamless information flow and actions across the different software modules owned by each.
  • Go-to-market. Going to market jointly will need strong collaboration too. In terms of the agreement on customer account ownership, pricing, sharing of pre-sales resources and so on.
  • Implementation. And, last but not the least, it will require collaboration to ramp up the implementation capabilities of the jointly developed solutions.

Checkout insights from the Ecosystm IoT Study.Click on the link below to Access 👇
Ecosystm IoT Market Insights


1